
Dask-mpi Documentation
Release 2022.4.0+0.gbb5e4a8.dirty

[’Dask-MPI Development Team’]

Apr 13, 2022

GETTING STARTED

1 Batch Script Example 3

2 Command Line Example 5

3 Use Job Queuing System Directly 7

Index 17

i

ii

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

Easily deploy Dask using MPI

The Dask-MPI project makes it easy to deploy Dask from within an existing MPI environment, such as one created
with the common MPI command-line launchers mpirun or mpiexec. Such environments are commonly found in high
performance supercomputers, academic research institutions, and other clusters where MPI has already been installed.

Dask-MPI provides two convenient interfaces to launch Dask, either from within a batch script or directly from the
command-line.

GETTING STARTED 1

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

2 GETTING STARTED

CHAPTER

ONE

BATCH SCRIPT EXAMPLE

You can turn your batch Python script into an MPI executable with the dask_mpi.initialize function.

from dask_mpi import initialize
initialize()

from dask.distributed import Client
client = Client() # Connect this local process to remote workers

This makes your Python script launchable directly with mpirun or mpiexec.

mpirun -np 4 python my_client_script.py

This deploys the Dask scheduler and workers as well as the user’s Client process within a single cohesive MPI compu-
tation.

3

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

4 Chapter 1. Batch Script Example

CHAPTER

TWO

COMMAND LINE EXAMPLE

Alternatively you can launch a Dask cluster directly from the command-line using the dask-mpi command and spec-
ifying a scheduler file where Dask can write connection information.

mpirun -np 4 dask-mpi --scheduler-file ~/dask-scheduler.json

You can then access this cluster either from a separate batch script or from an interactive session (such as a Jupyter
Notebook) by referencing the same scheduler file that dask-mpi created.

from dask.distributed import Client
client = Client(scheduler_file='~/dask-scheduler.json')

5

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

6 Chapter 2. Command Line Example

CHAPTER

THREE

USE JOB QUEUING SYSTEM DIRECTLY

You can also use Dask Jobqueue to deploy Dask directly on a job queuing system like SLURM, SGE, PBS, LSF, Torque,
or others. This can be especially nice when you want to dynamically scale your cluster during your computation, or for
interactive use.

3.1 Installing

You can install Dask-MPI with pip, conda, or by installing from source.

3.1.1 Pip

Pip can be used to install both Dask-MPI and its dependencies (e.g. dask, distributed, NumPy, Pandas, etc.) that are
necessary for different workloads.:

pip install dask_mpi --upgrade # Install everything from last released version

3.1.2 Conda

To install the latest version of Dask-MPI from the conda-forge repository using conda:

conda install dask-mpi -c conda-forge

3.1.3 Install from Source

To install Dask-MPI from source, clone the repository from github:

git clone https://github.com/dask/dask-mpi.git
cd dask-mpi
pip install .

You can also install directly from git main branch:

pip install git+https://github.com/dask/dask-mpi

7

https://jobqueue.dask.org
https://conda-forge.github.io/
https://www.anaconda.com/downloads
https://github.com/dask/dask-mpi

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

3.1.4 Test

Test Dask-MPI with pytest:

git clone https://github.com/dask/dask-mpi.git
cd dask-mpi
pytest dask_mpi

3.2 Dask-MPI with Batch Jobs

Dask, with Dask Distributed, is an incredibly powerful engine behind interactive sessions (see Dask-MPI with Inter-
active Jobs). However, there are many scenarios where your work is pre-defined and you do not need an interactive
session to execute your tasks. In these cases, running in batch-mode is best.

Dask-MPI makes running in batch-mode in an MPI environment easy by providing an API to the same functionality
created for the dask-mpi Command-Line Interface (CLI). However, in batch mode, you need the script running your
Dask Client to run in the same environment in which your Dask cluster is constructed, and you want your Dask cluster
to shut down after your Client script has executed.

To make this functionality possible, Dask-MPI provides the initialize() method as part of its Application Program
Interface (API). The initialize() function, when run from within an MPI environment (i.e., created by the use of
mpirun or mpiexec), launches the Dask Scheduler on MPI rank 0 and the Dask Workers on MPI ranks 2 and above.
On MPI rank 1, the initialize() function “passes through” to the Client script, running the Dask-based Client code
the user wishes to execute.

For example, if you have a Dask-based script named myscript.py, you would be able to run this script in parallel,
using Dask, with the following command.

mpirun -np 4 python myscript.py

This will run the Dask Scheduler on MPI rank 0, the user’s Client code on MPI rank 1, and 2 workers on MPI rank
2 and MPI rank 3. To make this work, the myscript.py script must have (presumably near the top of the script) the
following code in it.

from dask_mpi import initialize
initialize()

from distributed import Client
client = Client()

The Dask Client will automatically detect the location of the Dask Scheduler running on MPI rank 0 and connect to it.

When the Client code is finished executing, the Dask Scheduler and Workers (and, possibly, Nannies) will be terminated.

Tip: Running Batch Jobs with Job Schedulers

It is common in High-Performance Computing (HPC) environments to request the necessary computing resources
with a job scheduler, such LSF, PBS, or SLURM. In such environments, is is advised that the mpirun ... python
myscript.py command be placed in a job submission script such that the resources requested from the job scheduler
match the resources used by the mpirun command.

For more details on the initialize() method, see the Application Program Interface (API).

8 Chapter 3. Use Job Queuing System Directly

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

3.2.1 Connecting to Dashboard

Due to the fact that Dask might be initialized on a node that isn’t the login node a simple port forwarding can be
insufficient to connect to a dashboard.

To find out which node is the one hosting the dashboard append initialization code with location logging:

from dask_mpi import initialize
initialize()

from dask.distributed import Client
from distributed.scheduler import logger
import socket

client = Client()

host = client.run_on_scheduler(socket.gethostname)
port = client.scheduler_info()['services']['dashboard']
login_node_address = "supercomputer.university.edu" # Provide address/domain of login␣
→˓node

logger.info(f"ssh -N -L {port}:{host}:{port} {login_node_address}")

Then in batch job output file search for the logged line and use in your terminal:

ssh -N -L PORT_NUMBER:node03:PORT_NUMBER supercomputer.university.edu

The Bokeh Dashboard will be available at localhost:PORT_NUMBER.

3.3 Dask-MPI with Interactive Jobs

Dask-MPI can be used to easily launch an entire Dask cluster in an existing MPI environment, and attach a client to
that cluster in an interactive session.

In this scenario, you would launch the Dask cluster using the Dask-MPI command-line interface (CLI) dask-mpi.

mpirun -np 4 dask-mpi --scheduler-file scheduler.json

In this example, the above code will use MPI to launch the Dask Scheduler on MPI rank 0 and Dask Workers (or
Nannies) on all remaining MPI ranks.

It is advisable, as shown in the previous example, to use the --scheduler-file option when using the dask-mpi
CLI. The --scheduler-file option saves the location of the Dask Scheduler to a file that can be referenced later in
your interactive session. For example, the following code would create a Dask Client and connect it to the Scheduler
using the scheduler JSON file.

from distributed import Client
client = Client(scheduler_file='/path/to/scheduler.json')

As long as your interactive session has access to the same filesystem where the scheduler JSON file is saved, this
procedure will let you run your interactive session easily attach to your separate dask-mpi job.

After a Dask cluster has been created, the dask-mpi CLI can be used to add more workers to the cluster by using the
--no-scheduler option.

3.3. Dask-MPI with Interactive Jobs 9

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

mpirun -n 5 dask-mpi --scheduler-file scheduler.json --no-scheduler

In this example (above), 5 more workers will be created and they will be registered with the Scheduler (whose address
is in the scheduler JSON file).

Tip: Running with a Job Scheduler

In High-Performance Computing environments, job schedulers, such as LSF, PBS, or SLURM, are commonly used to
request the necessary resources needed for an MPI job, such as the number of CPU cores, the total memory needed,
and/or the number of nodes over which to spread out the MPI job. In such a case, it is advisable that the user place
the mpirun ... dask-mpi ... command in a job submission script, with the number of MPI ranks (e.g., -np 4)
matches the number of cores requested from the job scheduler.

Warning: MPI Jobs and Dask Nannies

It is many times useful to launch your Dask-MPI cluster (using dask-mpi) with Dask Nannies (i.e., with the
--worker-class distributed.Nanny option), rather than strictly with Dask Workers. This is because the Dask
Nannies can relaunch a worker when a failure occurs. However, in some MPI environments, Dask Nannies will not
be able to work as expected. This is because some installations of MPI may restrict the number of actual running
processes from exceeding the number of MPI ranks requested. When using Dask Nannies, the Nanny process is
executed and runs in the background after forking a Worker process. Hence, one Worker process will exist for
each Nanny process. Some MPI installations will kill any forked process, and you will see many errors arising
from the Worker processes being killed. If this happens, disable the use of Nannies with the --worker-class
distributed.Worker option to dask-mpi.

For more details on how to use the dask-mpi command, see the Command-Line Interface (CLI).

3.4 Dask-MPI with GPUs

When running dask-mpi on GPU enabled systems you will be provided with one or more GPUs per MPI rank.

Today Dask assumes one worker process per GPU with workers tied correctly to each GPU. To help with this the dask-
cuda package exists which contains cluster and worker classes which are designed to correctly configure your GPU
environment.

conda install -c rapidsai -c nvidia -c conda-forge dask-cuda
or
python -m pip install dask-cuda

It is possible to leverage dask-cuda with dask-mpi by setting the worker class to use dask_cuda.CUDAWorker.

mpirun -np 4 dask-mpi --worker-class dask_cuda.CUDAWorker

from dask_mpi import initialize

initialize(worker_class="dask_cuda.CUDAWorker")

Tip: If your cluster is configured so that each rank represents one node you may have multiple GPUs per node.
Workers will be created per GPU, not per rank so CUDAWorker will create one worker per GPU with names following

10 Chapter 3. Use Job Queuing System Directly

https://docs.rapids.ai/api/dask-cuda/nightly/index.html
https://docs.rapids.ai/api/dask-cuda/nightly/index.html

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

the pattern {rank}-{gpu_index}. So if you set -np 4 but you have four GPUs per node you will end up with sixteen
workers in your cluster.

3.4.1 Additional configuration

You may also want to pass additional configuration options to dask_cuda.CUDAWorker in addition to the ones sup-
ported by dask-mpi. It is common to configure things like memory management and network protocols for GPU
workers.

You can pass any additional options that are accepted by dask_cuda.CUDAWorker with the worker options paramater.

On the CLI this is expected to be a JSON serialised dictionary of values.

mpirun -np 4 dask-mpi --worker-class dask_cuda.CUDAWorker --worker-options '{"rmm_
→˓managed_memory": true}'

In Python it is just a dictionary.

from dask_mpi import initialize

initialize(worker_class="dask_cuda.CUDAWorker", worker_options={"rmm_managed_memory":␣
→˓True})

Tip: For more information on using GPUs with Dask check out the dask-cuda documentation.

3.5 Command-Line Interface (CLI)

3.5.1 dask-mpi

dask-mpi [OPTIONS] [SCHEDULER_ADDRESS]

Options

--scheduler-file <scheduler_file>

Filename to JSON encoded scheduler information.

--scheduler-port <scheduler_port>

Specify scheduler port number. Defaults to random.

--interface <interface>

Network interface like ‘eth0’ or ‘ib0’

--protocol <protocol>

Network protocol to use like TCP

--nthreads <nthreads>

Number of threads per worker.

3.5. Command-Line Interface (CLI) 11

https://docs.rapids.ai/api/dask-cuda/nightly/index.html

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

--memory-limit <memory_limit>

Number of bytes before spilling data to disk. This can be an integer (nbytes) float (fraction of total memory) or
‘auto’

--local-directory <local_directory>

Directory to place worker files

--scheduler, --no-scheduler

Whether or not to include a scheduler. Use –no-scheduler to increase an existing dask cluster

--nanny, --no-nanny

Start workers in nanny process for management (deprecated use –worker-class instead)

--worker-class <worker_class>

Class to use when creating workers

--worker-options <worker_options>

JSON serialised dict of options to pass to workers

--dashboard-address <dashboard_address>

Address for visual diagnostics dashboard

--name <name>

Name prefix for each worker, to which dask-mpi appends -<worker_rank>.

Arguments

SCHEDULER_ADDRESS

Optional argument

3.6 Application Program Interface (API)

initialize([interface, nthreads, ...]) Initialize a Dask cluster using mpi4py

3.6.1 dask_mpi.core.initialize

dask_mpi.core.initialize(interface=None, nthreads=1, local_directory='', memory_limit='auto',
nanny=False, dashboard=True, dashboard_address=':8787', protocol=None,
worker_class='distributed.Worker', worker_options=None, comm=None,
exit=True)

Initialize a Dask cluster using mpi4py

Using mpi4py, MPI rank 0 launches the Scheduler, MPI rank 1 passes through to the client script, and all other
MPI ranks launch workers. All MPI ranks other than MPI rank 1 block while their event loops run.

In normal operation these ranks exit once rank 1 ends. If exit=False is set they instead return an bool indicating
whether they are the client and should execute more client code, or a worker/scheduler who should not. In this
case the user is responsible for the client calling send_close_signal when work is complete, and checking the
returned value to choose further actions.

Parameters

interface [str] Network interface like ‘eth0’ or ‘ib0’

12 Chapter 3. Use Job Queuing System Directly

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

nthreads [int] Number of threads per worker

local_directory [str] Directory to place worker files

memory_limit [int, float, or ‘auto’] Number of bytes before spilling data to disk. This can be
an integer (nbytes), float (fraction of total memory), or ‘auto’.

nanny [bool] Start workers in nanny process for management (deprecated, use worker_class
instead)

dashboard [bool] Enable Bokeh visual diagnostics

dashboard_address [str] Bokeh port for visual diagnostics

protocol [str] Protocol like ‘inproc’ or ‘tcp’

worker_class [str] Class to use when creating workers

worker_options [dict] Options to pass to workers

comm: mpi4py.MPI.Intracomm Optional MPI communicator to use instead of
COMM_WORLD

exit: bool Whether to call sys.exit on the workers and schedulers when the event loop completes.

Returns

is_client: bool Only returned if exit=False. Inidcates whether this rank should continue to run
client code (True), or if it acts as a scheduler or worker (False).

3.7 How Dask-MPI Works

Dask-MPI works by using the mpi4py package and using MPI to selectively run different code on different MPI ranks.
Hence, like any other application of the mpi4py package, it requires creating the appropriate MPI environment through
the running of the mpirun or mpiexec commands.

mpirun -np 8 dask-mpi --no-nanny --scheduler-file ~/scheduler.json

or

mpirun -np 8 python my_dask_script.py

3.7.1 Using the Dask-MPI CLI

By convention, Dask-MPI always launches the Scheduler on MPI rank 0. When using the CLI (dask-mpi), Dask-MPI
launches the Workers (or Nannies and Workers) on the remaining MPI ranks (MPI ranks 1 and above). On each MPI
rank, a tornado event loop is started after the Scheduler and Workers are created. These event loops continue until a
kill signal is sent to one of the MPI processes, and then the entire Dask cluster (all MPI ranks) is shut down.

When using the --no-scheduler option of the Dask-MPI CLI, more workers can be added to an existing Dask cluster.
Since these two runs will be in separate mpirun or mpiexec executions, they will only be tied to each other through the
scheduler. If a worker in the new cluster crashes and takes down the entire MPI environment, it will not have anything
to do with the first (original) Dask cluster. Similarly, if the first cluster is taken down, the new workers will wait for the
Scheduler to reactivate so they can re-connect.

3.7. How Dask-MPI Works 13

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

3.7.2 Using the Dask-MPI API

Again, Dask-MPI always launches the Scheduler on MPI rank 0. When using the initialize() method, Dask-MPI
runs the Client script on MPI rank 1 and launches the Workers on the remaining MPI ranks (MPI ranks 2 and above).
The Dask Scheduler and Workers start their tornado event loops once they are created on their given MPI ranks, and
these event loops run until the Client process (MPI rank 1) sends the termination signal to the Scheduler. Once the
Scheduler receives the termination signal, it will shut down the Workers, too.

3.8 Development Guidelines

This repository is part of the Dask projects. General development guidelines including where to ask for help, a layout
of repositories, testing practices, and documentation and style standards are available at the Dask developer guidelines
in the main documentation.

3.8.1 Install

After setting up an environment as described in the Dask developer guidelines you can clone this repository with git:

git clone git@github.com:dask/dask-mpi.git

and install it from source:

cd dask-mpi
python setup.py install

3.8.2 Test

Test using pytest:

py.test dask_mpi --verbose

3.8.3 Build docs

To build docs site after cloning and installing from sources use:

cd dask-mpi/docs
make html

Output will be placed in build directory. Required dependencies for building docs can be found in dask-mpi/docs/
environment.yml.

14 Chapter 3. Use Job Queuing System Directly

https://dask.org
https://docs.dask.org/en/latest/develop.html
https://docs.dask.org/en/latest/develop.html

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

3.9 History

This package came out of the Dask Distributed project with help from the Pangeo collaboration. The original code was
contained in the distributed.cli.dask_mpi module and the original tests were contained in the distributed.
cli.tests.test_dask_mpi module. The impetus for pulling Dask-MPI out of Dask-Distributed was provided by
feedback on the Dask Distributted Issue 2402.

Development history for these original files was preserved.

3.9. History 15

https://github.com/dask/distributed
https://pangeo.io
https://github.com/dask/distributed/issues/2402

Dask-mpi Documentation, Release 2022.4.0+0.gbb5e4a8.dirty

16 Chapter 3. Use Job Queuing System Directly

INDEX

Symbols
--dashboard-address

dask-mpi command line option, 12
--interface

dask-mpi command line option, 11
--local-directory

dask-mpi command line option, 12
--memory-limit

dask-mpi command line option, 11
--name

dask-mpi command line option, 12
--nanny

dask-mpi command line option, 12
--no-nanny

dask-mpi command line option, 12
--no-scheduler

dask-mpi command line option, 12
--nthreads

dask-mpi command line option, 11
--protocol

dask-mpi command line option, 11
--scheduler

dask-mpi command line option, 12
--scheduler-file

dask-mpi command line option, 11
--scheduler-port

dask-mpi command line option, 11
--worker-class

dask-mpi command line option, 12
--worker-options

dask-mpi command line option, 12

D
dask-mpi command line option

--dashboard-address, 12
--interface, 11
--local-directory, 12
--memory-limit, 11
--name, 12
--nanny, 12
--no-nanny, 12
--no-scheduler, 12

--nthreads, 11
--protocol, 11
--scheduler, 12
--scheduler-file, 11
--scheduler-port, 11
--worker-class, 12
--worker-options, 12
SCHEDULER_ADDRESS, 12

I
initialize() (in module dask_mpi.core), 12

S
SCHEDULER_ADDRESS

dask-mpi command line option, 12

17

	Batch Script Example
	Command Line Example
	Use Job Queuing System Directly
	Installing
	Pip
	Conda
	Install from Source
	Test

	Dask-MPI with Batch Jobs
	Connecting to Dashboard

	Dask-MPI with Interactive Jobs
	Dask-MPI with GPUs
	Additional configuration

	Command-Line Interface (CLI)
	dask-mpi

	Application Program Interface (API)
	dask_mpi.core.initialize

	How Dask-MPI Works
	Using the Dask-MPI CLI
	Using the Dask-MPI API

	Development Guidelines
	Install
	Test
	Build docs

	History

	Index

