

Dask-MPI

Easily deploy Dask using MPI

The Dask-MPI project makes it easy to deploy Dask from within an existing MPI
environment, such as one created with the common MPI command-line launchers
mpirun or mpiexec. Such environments are commonly found in high performance
supercomputers, academic research institutions, and other clusters where MPI
has already been installed.

Dask-MPI provides two convenient interfaces to launch Dask, either from within
a batch script or directly from the command-line.

Batch Script Example

You can turn your batch Python script into an MPI executable
with the dask_mpi.initialize function.

from dask_mpi import initialize
initialize()

from dask.distributed import Client
client = Client() # Connect this local process to remote workers

This makes your Python script launchable directly with mpirun or mpiexec.

mpirun -np 4 python my_client_script.py

This deploys the Dask scheduler and workers as well as the user’s Client
process within a single cohesive MPI computation.

Command Line Example

Alternatively you can launch a Dask cluster directly from the command-line
using the dask-mpi command and specifying a scheduler file where Dask can
write connection information.

mpirun -np 4 dask-mpi --scheduler-file ~/dask-scheduler.json

You can then access this cluster either from a separate batch script or from an
interactive session (such as a Jupyter Notebook) by referencing the same scheduler
file that dask-mpi created.

from dask.distributed import Client
client = Client(scheduler_file='~/dask-scheduler.json')

Use Job Queuing System Directly

You can also use Dask Jobqueue [https://jobqueue.dask.org] to deploy Dask
directly on a job queuing system like SLURM, SGE, PBS, LSF, Torque, or others.
This can be especially nice when you want to dynamically scale your cluster
during your computation, or for interactive use.

Installing

You can install Dask-MPI with pip, conda, or by installing from source.

Pip

Pip can be used to install both Dask-MPI and its dependencies (e.g. dask,
distributed, NumPy, Pandas, etc.) that are necessary for different
workloads.:

pip install dask_mpi --upgrade # Install everything from last released version

Conda

To install the latest version of Dask-MPI from the
conda-forge [https://conda-forge.github.io/] repository using
conda [https://www.anaconda.com/downloads]:

conda install dask-mpi -c conda-forge

Install from Source

To install Dask-MPI from source, clone the repository from github [https://github.com/dask/dask-mpi]:

git clone https://github.com/dask/dask-mpi.git
cd dask-mpi
pip install .

You can also install directly from git main branch:

pip install git+https://github.com/dask/dask-mpi

Test

Test Dask-MPI with pytest:

git clone https://github.com/dask/dask-mpi.git
cd dask-mpi
pytest dask_mpi

Dask-MPI with Batch Jobs

Dask, with Dask Distributed, is an incredibly powerful engine behind interactive sessions
(see Dask-MPI with Interactive Jobs). However, there are many scenarios where your work is pre-defined
and you do not need an interactive session to execute your tasks. In these cases, running
in batch-mode is best.

Dask-MPI makes running in batch-mode in an MPI environment easy by providing an API to the
same functionality created for the dask-mpi Command-Line Interface (CLI). However, in batch mode, you
need the script running your Dask Client to run in the same environment in which your Dask
cluster is constructed, and you want your Dask cluster to shut down after your Client script
has executed.

To make this functionality possible, Dask-MPI provides the initialize() method as part of
its Application Program Interface (API). The initialize() function, when run from within an MPI environment (i.e.,
created by the use of mpirun or mpiexec), launches the Dask Scheduler on MPI rank 0
and the Dask Workers on MPI ranks 2 and above. On MPI rank 1, the initialize() function
“passes through” to the Client script, running the Dask-based Client code the user wishes to
execute.

For example, if you have a Dask-based script named myscript.py, you would be able to
run this script in parallel, using Dask, with the following command.

mpirun -np 4 python myscript.py

This will run the Dask Scheduler on MPI rank 0, the user’s Client code on MPI rank 1, and
2 workers on MPI rank 2 and MPI rank 3. To make this work, the myscript.py script must
have (presumably near the top of the script) the following code in it.

from dask_mpi import initialize
initialize()

from distributed import Client
client = Client()

The Dask Client will automatically detect the location of the Dask Scheduler running on MPI
rank 0 and connect to it.

When the Client code is finished executing, the Dask Scheduler and Workers (and, possibly,
Nannies) will be terminated.

Tip

Running Batch Jobs with Job Schedulers

It is common in High-Performance Computing (HPC) environments to request the necessary
computing resources with a job scheduler, such LSF, PBS, or SLURM. In such environments,
is is advised that the mpirun ... python myscript.py command be placed in a job
submission script such that the resources requested from the job scheduler match the
resources used by the mpirun command.

For more details on the initialize() method, see the Application Program Interface (API).

Connecting to Dashboard

Due to the fact that Dask might be initialized on a node that isn’t the login node
a simple port forwarding can be insufficient to connect to a dashboard.

To find out which node is the one hosting the dashboard append initialization code with location logging:

from dask_mpi import initialize
initialize()

from dask.distributed import Client
from distributed.scheduler import logger
import socket

client = Client()

host = client.run_on_scheduler(socket.gethostname)
port = client.scheduler_info()['services']['dashboard']
login_node_address = "supercomputer.university.edu" # Provide address/domain of login node

logger.info(f"ssh -N -L {port}:{host}:{port} {login_node_address}")

Then in batch job output file search for the logged line and use in your terminal:

ssh -N -L PORT_NUMBER:node03:PORT_NUMBER supercomputer.university.edu

The Bokeh Dashboard will be available at localhost:PORT_NUMBER.

Dask-MPI with Interactive Jobs

Dask-MPI can be used to easily launch an entire Dask cluster in an existing MPI environment,
and attach a client to that cluster in an interactive session.

In this scenario, you would launch the Dask cluster using the Dask-MPI command-line interface
(CLI) dask-mpi.

mpirun -np 4 dask-mpi --scheduler-file scheduler.json

In this example, the above code will use MPI to launch the Dask Scheduler on MPI rank 0 and
Dask Workers (or Nannies) on all remaining MPI ranks.

It is advisable, as shown in the previous example, to use the --scheduler-file option when
using the dask-mpi CLI. The --scheduler-file option saves the location of the Dask
Scheduler to a file that can be referenced later in your interactive session. For example,
the following code would create a Dask Client and connect it to the Scheduler using the
scheduler JSON file.

from distributed import Client
client = Client(scheduler_file='/path/to/scheduler.json')

As long as your interactive session has access to the same filesystem where the scheduler JSON
file is saved, this procedure will let you run your interactive session easily attach to your
separate dask-mpi job.

After a Dask cluster has been created, the dask-mpi CLI can be used to add more workers to
the cluster by using the --no-scheduler option.

mpirun -n 5 dask-mpi --scheduler-file scheduler.json --no-scheduler

In this example (above), 5 more workers will be created and they will be registered with the
Scheduler (whose address is in the scheduler JSON file).

Tip

Running with a Job Scheduler

In High-Performance Computing environments, job schedulers, such as LSF, PBS, or SLURM, are
commonly used to request the necessary resources needed for an MPI job, such as the number
of CPU cores, the total memory needed, and/or the number of nodes over which to spread out
the MPI job. In such a case, it is advisable that the user place the mpirun ... dask-mpi ...
command in a job submission script, with the number of MPI ranks (e.g., -np 4) matches the
number of cores requested from the job scheduler.

Warning

MPI Jobs and Dask Nannies

It is many times useful to launch your Dask-MPI cluster (using dask-mpi) with Dask Nannies
(i.e., with the --worker-class distributed.Nanny option), rather than strictly with Dask Workers.
This is because the Dask Nannies can relaunch a worker when a failure occurs. However, in some MPI
environments, Dask Nannies will not be able to work as expected. This is because some installations
of MPI may restrict the number of actual running processes from exceeding the number of MPI ranks
requested. When using Dask Nannies, the Nanny process is executed and runs in the background
after forking a Worker process. Hence, one Worker process will exist for each Nanny process.
Some MPI installations will kill any forked process, and you will see many errors arising from
the Worker processes being killed. If this happens, disable the use of Nannies with the
--worker-class distributed.Worker option to dask-mpi.

For more details on how to use the dask-mpi command, see the Command-Line Interface (CLI).

Dask-MPI with GPUs

When running dask-mpi on GPU enabled systems you will be provided with one or more GPUs per MPI rank.

Today Dask assumes one worker process per GPU with workers tied correctly to each GPU. To help with this
the dask-cuda [https://docs.rapids.ai/api/dask-cuda/nightly/index.html] package exists which contains
cluster and worker classes which are designed to correctly configure your GPU environment.

conda install -c rapidsai -c nvidia -c conda-forge dask-cuda
or
python -m pip install dask-cuda

It is possible to leverage dask-cuda with dask-mpi by setting the worker class to use dask_cuda.CUDAWorker.

mpirun -np 4 dask-mpi --worker-class dask_cuda.CUDAWorker

from dask_mpi import initialize

initialize(worker_class="dask_cuda.CUDAWorker")

Tip

If your cluster is configured so that each rank represents one node you may have multiple GPUs
per node. Workers will be created per GPU, not per rank so CUDAWorker will create one worker
per GPU with names following the pattern {rank}-{gpu_index}. So if you set -np 4 but you
have four GPUs per node you will end up with sixteen workers in your cluster.

Additional configuration

You may also want to pass additional configuration options to dask_cuda.CUDAWorker in addition to the ones
supported by dask-mpi. It is common to configure things like memory management and network protocols for
GPU workers.

You can pass any additional options that are accepted by dask_cuda.CUDAWorker with the worker options paramater.

On the CLI this is expected to be a JSON serialised dictionary of values.

mpirun -np 4 dask-mpi --worker-class dask_cuda.CUDAWorker --worker-options '{"rmm_managed_memory": true}'

In Python it is just a dictionary.

from dask_mpi import initialize

initialize(worker_class="dask_cuda.CUDAWorker", worker_options={"rmm_managed_memory": True})

Tip

For more information on using GPUs with Dask check out the dask-cuda documentation [https://docs.rapids.ai/api/dask-cuda/nightly/index.html].

Command-Line Interface (CLI)

dask-mpi

dask-mpi [OPTIONS] [SCHEDULER_ADDRESS]

Options

	
--scheduler-file <scheduler_file>

	Filename to JSON encoded scheduler information.

	
--scheduler-port <scheduler_port>

	Specify scheduler port number. Defaults to random.

	
--interface <interface>

	Network interface like ‘eth0’ or ‘ib0’

	
--protocol <protocol>

	Network protocol to use like TCP

	
--nthreads <nthreads>

	Number of threads per worker.

	
--memory-limit <memory_limit>

	Number of bytes before spilling data to disk. This can be an integer (nbytes) float (fraction of total memory) or ‘auto’

	
--local-directory <local_directory>

	Directory to place worker files

	
--scheduler, --no-scheduler

	Whether or not to include a scheduler. Use –no-scheduler to increase an existing dask cluster

	
--nanny, --no-nanny

	Start workers in nanny process for management (deprecated use –worker-class instead)

	
--worker-class <worker_class>

	Class to use when creating workers

	
--worker-options <worker_options>

	JSON serialised dict of options to pass to workers

	
--dashboard-address <dashboard_address>

	Address for visual diagnostics dashboard

	
--name <name>

	Name prefix for each worker, to which dask-mpi appends -<worker_rank>.

Arguments

	
SCHEDULER_ADDRESS

	Optional argument

Application Program Interface (API)

	initialize([interface, nthreads, ...])

	Initialize a Dask cluster using mpi4py

dask_mpi.core.initialize

	
dask_mpi.core.initialize(interface=None, nthreads=1, local_directory='', memory_limit='auto', nanny=False, dashboard=True, dashboard_address=':8787', protocol=None, worker_class='distributed.Worker', worker_options=None, comm=None, exit=True)

	Initialize a Dask cluster using mpi4py

Using mpi4py, MPI rank 0 launches the Scheduler, MPI rank 1 passes through to the
client script, and all other MPI ranks launch workers. All MPI ranks other than
MPI rank 1 block while their event loops run.

In normal operation these ranks exit once rank 1 ends. If exit=False is set they
instead return an bool indicating whether they are the client and should execute
more client code, or a worker/scheduler who should not. In this case the user is
responsible for the client calling send_close_signal when work is complete, and
checking the returned value to choose further actions.

	Parameters

	
	interfacestr
	Network interface like ‘eth0’ or ‘ib0’

	nthreadsint
	Number of threads per worker

	local_directorystr
	Directory to place worker files

	memory_limitint, float, or ‘auto’
	Number of bytes before spilling data to disk. This can be an
integer (nbytes), float (fraction of total memory), or ‘auto’.

	nannybool
	Start workers in nanny process for management (deprecated, use worker_class instead)

	dashboardbool
	Enable Bokeh visual diagnostics

	dashboard_addressstr
	Bokeh port for visual diagnostics

	protocolstr
	Protocol like ‘inproc’ or ‘tcp’

	worker_classstr
	Class to use when creating workers

	worker_optionsdict
	Options to pass to workers

	comm: mpi4py.MPI.Intracomm
	Optional MPI communicator to use instead of COMM_WORLD

	exit: bool
	Whether to call sys.exit on the workers and schedulers when the event
loop completes.

	Returns

	
	is_client: bool
	Only returned if exit=False. Inidcates whether this rank should continue
to run client code (True), or if it acts as a scheduler or worker (False).

How Dask-MPI Works

Dask-MPI works by using the mpi4py package and using MPI to selectively run
different code on different MPI ranks. Hence, like any other application of the
mpi4py package, it requires creating the appropriate MPI environment through
the running of the mpirun or mpiexec commands.

mpirun -np 8 dask-mpi --no-nanny --scheduler-file ~/scheduler.json

or

mpirun -np 8 python my_dask_script.py

Using the Dask-MPI CLI

By convention, Dask-MPI always launches the Scheduler on MPI rank 0. When using the CLI
(dask-mpi), Dask-MPI launches the Workers (or Nannies and Workers) on the remaining
MPI ranks (MPI ranks 1 and above). On each MPI rank, a tornado event loop is started
after the Scheduler and Workers are created. These event loops continue until a kill
signal is sent to one of the MPI processes, and then the entire Dask cluster (all MPI ranks)
is shut down.

When using the --no-scheduler option of the Dask-MPI CLI, more workers can be added to
an existing Dask cluster. Since these two runs will be in separate mpirun or mpiexec
executions, they will only be tied to each other through the scheduler. If a worker in the
new cluster crashes and takes down the entire MPI environment, it will not have anything to
do with the first (original) Dask cluster. Similarly, if the first cluster is taken down,
the new workers will wait for the Scheduler to reactivate so they can re-connect.

Using the Dask-MPI API

Again, Dask-MPI always launches the Scheduler on MPI rank 0. When using the initialize()
method, Dask-MPI runs the Client script on MPI rank 1 and launches the Workers on the
remaining MPI ranks (MPI ranks 2 and above). The Dask Scheduler and Workers start their
tornado event loops once they are created on their given MPI ranks, and these event
loops run until the Client process (MPI rank 1) sends the termination signal to the
Scheduler. Once the Scheduler receives the termination signal, it will shut down the
Workers, too.

Development Guidelines

This repository is part of the Dask [https://dask.org] projects. General development guidelines
including where to ask for help, a layout of repositories, testing practices,
and documentation and style standards are available at the Dask developer
guidelines [https://docs.dask.org/en/latest/develop.html] in the main documentation.

Install

After setting up an environment as described in the Dask developer
guidelines [https://docs.dask.org/en/latest/develop.html] you can clone this repository with git:

git clone git@github.com:dask/dask-mpi.git

and install it from source:

cd dask-mpi
python setup.py install

Test

Test using pytest:

py.test dask_mpi --verbose

Build docs

To build docs site after cloning and installing from sources use:

cd dask-mpi/docs
make html

Output will be placed in build directory.
Required dependencies for building docs can be found in dask-mpi/docs/environment.yml.

History

This package came out of the Dask Distributed [https://github.com/dask/distributed] project with help from the
Pangeo [https://pangeo.io] collaboration. The original code was contained in the distributed.cli.dask_mpi
module and the original tests were contained in the distributed.cli.tests.test_dask_mpi
module. The impetus for pulling Dask-MPI out of Dask-Distributed was provided by feedback
on the Dask Distributted Issue 2402 [https://github.com/dask/distributed/issues/2402].

Development history for these original files was preserved.

Index

 Symbols
 | D
 | I
 | S

Symbols

 	
 	
 --dashboard-address

 	dask-mpi command line option

 	
 --interface

 	dask-mpi command line option

 	
 --local-directory

 	dask-mpi command line option

 	
 --memory-limit

 	dask-mpi command line option

 	
 --name

 	dask-mpi command line option

 	
 --nanny

 	dask-mpi command line option

 	
 --no-nanny

 	dask-mpi command line option

 	
 --no-scheduler

 	dask-mpi command line option

 	
 	
 --nthreads

 	dask-mpi command line option

 	
 --protocol

 	dask-mpi command line option

 	
 --scheduler

 	dask-mpi command line option

 	
 --scheduler-file

 	dask-mpi command line option

 	
 --scheduler-port

 	dask-mpi command line option

 	
 --worker-class

 	dask-mpi command line option

 	
 --worker-options

 	dask-mpi command line option

D

 	
 	
 dask-mpi command line option

 	--dashboard-address

 	--interface

 	--local-directory

 	--memory-limit

 	--name

 	--nanny

 	--no-nanny

 	--no-scheduler

 	--nthreads

 	--protocol

 	--scheduler

 	--scheduler-file

 	--scheduler-port

 	--worker-class

 	--worker-options

 	SCHEDULER_ADDRESS

I

 	
 	initialize() (in module dask_mpi.core)

S

 	
 	
 SCHEDULER_ADDRESS

 	dask-mpi command line option

 nav.xhtml

 Table of Contents

 		
 Dask-MPI

_static/file.png

_static/minus.png

_static/plus.png

